HEAT TRANSFER DURING LAMINAR FLUID FLOW IN
A PIPE WITH RADIATIVE HEAT REMOVAL
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The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a circular
pipe having a parabolic entry velocity distribution and heat removal by radiation from the sur-
face of the pipe. Analytical relations are derived for the criterion Nu as a function of the
longitudinal coordinate and for its limiting value Nu,, as a function of the radiation parameter
&,

The heat-transfer problems associated with laminar fluid flow in a pipe for a given wall temperature
or heat flux have been investigated in detail in [1-3]. There are several problems, however, in which the
boundary conditions prove to be more complicated, representing in general a certain relationship between
the wall temperature and heat flux, as well as the parameters of the external medium. A specific example
of such a problem is radiative heat removal from a pipe in which a liquid to be cooled is flowing. In the
case of an isolated pipe radiating into a diathermal medium in the absence of convective and conductive
heat removal the heat flux is proportional to the fourth power of the pipe wall temperature. The stated
problem has been investigated in [6]. In the present article we solve the problem by a simpler method,
reducing it to the solution of a set of ordinary differential equations,

Let us consider a flow of an incompressible fluid in a circular pipe in the presence of hydrodynamic
stabilization. We assume that the physical attributes of the fluid are invariant and the entry temperature
is constant over the cross section. Heat removal takes place from the pipe surface due to radiation, and
the temperature of the ambient medium is zero. With hydrodynamic stabilization the radial distribution of

the velocity obeys the Poiseuille law
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We introduce X =x/dPe; r'=2r/d; T'=T/Ty q' =q/qy Ty/Tyand, dropping the prime from the vari-
ables, we write the energy equation in the form
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with the boundary and initial conditions
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We solve Eq. (1) by a method representing a generalization of the method described in [5] to the case
of an incompressible fluid flow in a circular pipe. We solve the equation for the leading derivative and
intergrate term-by-term over the radius:
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where C(X) = 0 due to condition (2a). We then divide both sides of the new equation by r and again infegrate
over the radius:
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As a first approximation we represent the expression for the temperature profile in the form
T = a(X) 4 b(X) r*®

or, complying with conditions (2b) and (2¢),

T=T, +-L(*—1). (5)
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We substitute this approximate relation into the right-hand side of Eq. (4) and take two quadratures.
We then obtain the second-approximation temperature profile:

I (da [ r? rt ‘1 dg gdo
T=T(X)+ —|—|— — — —
A+ { (4 16>+(a aX ‘oc2dX)

ra+2 roc—H _(L ) _d_d_ ra+2 . 92 N _l o l (6)
Xﬁa+m2"'m+4ﬁ_ka dx[@+4y0” m+4Q(m’ a+4)L'

In the method described in [5] the second approximation for the desired function depends only on one
unknown parameter, and by satisfying one of the boundary conditions it is possible to obtain an ordinary
differential equation for the variation of this parameter along the longitudinal coordinate. In our case, to
find Ty (X) and a(X) we substitute expression (5) into Eqs. (3) and (4) and set the limits of integration in these
equations equal to unity. Then after integration and a few straightforward transformations we obtain
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with the following initial conditions: « — « and Ty, =1 for X =0, as implied by relation (2¢). To find the
unknown function Te(X) entering into (6) we use the relation for the mass-average flow temperature, We
write the average temperature in the form

1
T =2 ,"2(1 — 1) Trdr, (8)
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Then from Eq. (1), using condition (2b), we obtain
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Fig. 1. Criterion Nu versus X for T =0.
1) g =const; 2)$=0.2; 3)1; 4)5; 5) 10;
6) 50; 7 Tw = const,
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R R T Next we substitute expression (6) into Eq. (8), carry out the integra-
) ¥ tion and, using the relationship between the resulting value of the mass-
Fig. 2. Limiting criteriosn average temperature and expression (9), find the unknown function Te(X):
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Consequently, by inserting expression (10) into (6) we finally obtain the temperature profile:
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We can further refine the temperature profile by using expression (11) as the first approximation.
It is important to note that the substance of our ensuing discussion remains unchanged in this case, other
than the fact that the second derivatives evolving for the function TW(X) and «(X) upon substitution of (11)
into the right-hand side of Eq. (4) can be obtained by differentiation of the equations in the system (7). Ex-
perience has shown, however, that further iterations are unnecessary, because the accuracy with which
expression (11) describes the temperature profile (1.5% error) is acceptable for engineering calculations.
Now the dependence of the criterion Nu on the coordinate X can be written as follows:
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Fig. 3. Wall temperature Ty, versus X is important to. realize th‘at in comparing expression (12) with
for Tk =0. 1) =0.2; 2) 10, the exact solution according to [2] for the case g = coust the

discrepancy is 1 to 1,5%. It was assumed in the derivation of

condition (2¢) that the heat-transfer coefficient in the initial
cross section tends to infinity, even through the problem does not exclude the admissibility of specifying a
temperature jump between the fluid and wall at the pipe entry.

We solved the set of equations (7) numerically, The results of the calculations for the local criterion
Nu are given in Fig. 1. Curves I and 7 were plotted for the cases of a constant heat flux and constant wall
temperature, respectively, and curves 2, 3, 4, 5, and 6 were plotted for the following values of the para-
meter : 0,2, 1, 5, 10, and 50, A comparison with the results of [6] yields a discrepancy of 1 to 1.5%. As
& — 0 and ¢ — = the set of equations (7) degenerates into the set of equations corresponding to specification
of a constant heat flux at the pipe wall and a constant pipe wall temperature, respectively, If the tempera-
ture of the surrounding medium is not equal to zero, we have q = —@(TéV—Tf{). We solve the system (7) for
de/dX and (1/q)(dg/dX), substituting (1/q)(dq/dX) into (12) and putting doy/dX = 0 for X — o, We obtain the
following expression for the limiting value Nu, of the criterion:
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in which «. is determined from the equation
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The dependence of the limiting criterion Nu, on the parameter ti)’IGk is shown in Fig. 2, The values
of the local criterion Nu for various values of the parameter ¢ when the femperature of the external medium
is equal to zero is described by the following interpolation formula (based on the values of the parameter
in Fig, 1):

NuNu —0.94 0.0061 — 0.0053In X In®

‘g=const 140.0242In X

with 1 to 2% error in the range 0.001 < X < 0.2 and 0.1 < & < 50. The results of calculations of the limiting
criterion Nu,, are shown in Fig. 2, where they are described by the interpolation formula

4.364 - 3.660T3

Nu, =
1 o7

with 0.5% error.

The dependence of the second-approximation pipe wall temperature on X is given in Fig. 3 for values
of the parameter ¢ = 0.2 and 10 (curves 1 and 2, respectively). A sharp drop in the pipe wall temperature
is observed in the initial section.
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The dependence of Qu/chTo on X is shown in Fig. 4. Curves 1 through 4 were plotted for values of
¢ =0.2, 1, 5, and 10, respectively. Also shown in this figure for comparison are alternative curves 1 and
4 plotted for the case of a constant pipe wall temperature for values of the parameter ¢ = 0.2 and 10. Itis
evident from the graph that the difference for the neglected heat flux for the corresponding curves runs from
10 to 1% in the interval 0,001 < X < 0,1,

NOTATION
X, r aretheaxial and radial coordinates;
d ' is the pipe diameter;
T, Ty, Ty, Tx are the temperatures of the fluid, the fluid at entry to the pipe, the pipe wall, and the
surrounding medium;
u is the fluid velocity in the pipe;
u is the average fluid velocity;
p, Cp, A are the density, heat capacity, and thermal conductivity of the fluid;
€ is the emissivity of the pipe surface;
o is the Stefan—Boltzmann constant;
q, g is the heat flux at the wall and entry of the pipe;
T is the average fluid temperature;
G is the volumetric flow rate of fluid;
X =x/dPe is the reduced axial coordinate;
Pe : is the Peclet number;
Nu =2a/(Tw—T) is the Nusselt number;
Nio is the limiting value of the Nusselt number;
& =coTh/2) is the radiation parameter;
Q= qdX is the integral heat flux from pipe surface,
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