
HEAT TRANSFER DURING LAMINAR FLUID 

A PIPE WITH RADIATIVE HEAT REMOVAL 

Ya. S. Kadaner, Yu. P. Rassadkin, 
and ~.. L. Spektor 

FLOW IN 

UDC 536.248 

The h e a t - t r a n s f e r  p rob lem is analyzed for  l amina r  fluid flow in the initial section of a c i r cu l a r  
pipe having a parabol ic  en t ry  veloci ty  distr ibution and heat  removal  by radiat ion f rom the s u r -  
face of the pipe. Analytical  re la t ions  a r e  der ived for  the c r i t e r ion  Nu as a function of the 
longitudinal coordinate  and for  its l imit ing value Nu~ as a function of the radiat ion p a r a m e t e r  

The h e a t - t r a n s f e r  p rob l ems  assoc ia ted  with l a m i n a r  fluid flow in a pipe for  a given wall  t e m p e r a t u r e  
o r  heat  flux have been invest igated in detail  in [1-3]. There  a r e  s eve ra l  p r o b l e m s ,  however ,  in which the 
boundary  conditions prove  to be m o r e  complicated,  r epresen t ing  in genera l  a cer ta in  re la t ionship between 
the wall  t e m p e r a t u r e  and heat  flux, as well as the p a r a m e t e r s  of the external  medium.  A specif ic  example  
of such a p rob lem is rad ia t ive  heat  r emova l  f rom a pipe in which a liquid to be cooled is flowing. In the 
case  of an isolated pipe radiat ing into a d ia thermaI  medium in the absence  of convect ive  and conductive 
heat  r emova l  the heat  flux is propor t ional  to the fourth power  of the pipe wall  t empe ra tu r e .  The s tated 
p rob lem has  been invest igated in [6]. In the p resen t  a r t i c le  we solve the p rob lem by a s imp le r  method, 
reducing it to the solution of a se t  of o rd inary  different ial  equations.  

Le t  us cons ider  a flow of an incompress ib le  fluid in a c i r c u l a r  pipe in the p re sence  of hydrodynamic  
stabi l izat ion.  We a s s u m e  that the physical  a t t r ibutes  of the fluid a r e  invar iant  and the en t ry  t e m p e r a t u r e  
is constant  over  the c r o s s  section.  Heat  r emova l  takes  place f rom the pipe sur face  due to radiat ion,  and 
the t e m p e r a t u r e  of the ambient  medium is zero .  With hydrodynamic  s tabi l izat ion the radia l  distr ibution of 
the veloci ty  obeys the Poiseui l le  law 

[ u = 2 u  1 - - 4  

and the energy  equation has  the fo rm 

or ,  s ince k/p'ucp = d / P c ,  
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with the boundary and initial conditions 

We introduce X = x /dPe ;  r T = 2r /d ;  
ab les ,  we wr i te  the energy  equation in the fo rm 
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x = 0  T = T o, T~ = To. 

TT = T/T0; q' = q/q0; T~v/T0 and, dropping the p r i m e  f rom the v a r i -  
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with the boundary and initial conditions 

r =  0 07" = 0 ,  (2a) 
& 

'r 1 OT 4 = - -  = q = ,--eTa,, (2b) 
Or 

X = 0  T = I ,  T ~ = I .  (2c) 

We solve Eq. (1) by a method represent ing a general izat ion of the method descr ibed in [5] to the case 
of an incompress ible  fluid flow in a c i r cu la r  pipe. We solve the equation for the leading derivative and 
in tergra te  t e r m - b y - t e r m  over  the radius:  

r 

OT 1 ? OT 
r - -  = | (1 - -  r ~) rdr 4- C~ (X), (3) 

Or 3 
0 

where CI(X) = 0 due to condition (2a). We then divide both sides of the new equation by r and again integrate 
over  the radius:  

T = T e (X) 4 - 1  d__f_rr dT - -  r ~) rdr. (4) 

o 0 

As a f i rs t  approximation we represen t  the expression for  the tempera ture  profile in the form 

T = a (X) 4- b (X) p (x )  

or,  complying with conditions (2b) and (2c), 

T = T w -1- ---q (r ~ - -  t). (5) 

We substitute this approximate relation into the r ight-hand side of Eq. (4) and take two quadratures .  
We then obtain the second-approximation tempera tu re  profile:  

T = r e (x )  4- ~ -  ~ -~  4 16 4- " dX ~ d X ]  

• k(~z4-2) ~ (a-+~)~] 4- q . da 2 2 a dX L ( ~  lnr (~4-4) ~ l n r - -  ~4 -4  " (6) 

In the method descr ibed in [5] the second approximation for the desired function depends only on one 
unknown pa ramete r ,  and by satisfying one of the boundary conditions it is possible to obtain an o rd inary  
differential equation for  the variation of this pa rame te r  along the longitudinal coordinate.  In our case,  to 
find Tw(X) and a(X) we substitute expression (5) into Eqs. (3) and (4) and set the l imits  of integration in these 
equations equal to unity. Then after  integration and a few st ra ightforward t ransformat ions  we obtain 

d ] =  3 -  (7) 
dX (~+2)2(a §  5 J 

d [ T w ( a 4 - 6 ) T :  t = - - T •  
dX ~ + 8 (~ 4- 2)(~ 4- 4) 

with the following initial conditions; a ~ r and T w = 1 for X = 0, as implied by relation (2e). To find the 
unknown function Te(X) entering into (6) we use the relation for the m a s s - a v e r a g e  flow tempera ture .  We 
wri te  the average  tempera ture  in the form 

1 

= 2 .I 2 (1 ~ r ~) Trdr. (8) 
0 

Then from Eq. (1), using condition (2b), we obtain 
1 1 

2 2(1 - - r  ~) OX -~r \ Or ] 
o 0 

21 



Nu 

f /  F 
f f  

. /I..5 
/ o 

2 4 6 f l  

f 

2 4 8 ~ -  2 3 5 X  

Fig. 1. Cri ter ion Nu versus  X for  T k = 0. 
1) q = e o n s t ;  2 ) r  3) 1; 4) 5; 5) 10; 
6) 50; 7) Tw = coast. 
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F i g .  2. Limiting cr i ter ion 
Nu~ versus  pa rame te r  r  

and 
X 

~F = 1 + 8 ,t" qdX. (9) 
0 

Condition (2c) renders  the constant of integration in the la t ter  equation 
equal to unity. 

Next we substi tute expression (6) into Eq. (8), c a r ry  out the integra- 
tion and, using the relationship between the resulting value of the m a s s -  
average t empera tu re  and expression (9), find the unknown function Te(X): 

Te= + T dx - 

X 
32 (2Gr + 7) 16q 

(a -~, 2) ~ (a + 4) 2 (a + 6) ((z .-" 8) a (a + 4) 2 ((z -? 6) 

[ 2 a 2 + 2 5 c r  76 2 a 2 + 1 7 o ; + 3 4  ] da } 
• ( c r 2 4 7  3 - -  ( a + 2 )  2 - - ~  " 

(10) 

Consequently, by inserting express ion (10) into (6) we finally Obtain the t empera ture  profile: 
X 

T = 1 + 8 qdX -t- --~ dX dX 4 16 96 
o 

+ \ ( a + 2 )  2 ( a + 4 )  2 - -  ( a q - 2 )  2 ( a - ~  4) 2 (a -~- 6) (a + 8) -~-  ~ -  

+ q da [ r~+e )( inr 2 ) r~+4 (lnr 2 ) 
a d X  ( a q - 2 )  2 a + 2  ( a + 4 )  ~ a + 4  

__ 16 ( 2 a 2 + 2 5 a + 7 6  --  2 a 2 + 1 7 u + 3 4 ] ] / .  (11) 
(a 4 4)2(a -l- 6) k ] J ~ ( a  + 4)(a ./- 8) 3 (a + 2) 3 

We can further  refine the t empera ture  profile by using express ion (11) as the f i rs t  approximation. 
It is important  to note that the substance of our ensuing discussion remains  unchanged in this case ,  other 
than the fact that the second derivat ives evolving for  the function Tw(X) and c~(X) upon substitution of (11) 
into the right-hand side of Eq. (4) can be obtained by differentiation of the equations in the sys tem (7). Ex-  
per ience  has shown, however,  that fur ther  i terations are  unnecessary,  because the accuracy  with which 
express ion (11) desc r ibes  the t empera ture  profi le (1.5% er ror )  is acceptable for  engineering calculations. 
Now the dependence of the cr i ter ion Nu on the coordinate X can be writ ten as follows: 

/ [  11a+106 1 . dq 
N u = 4 8  _ i1- -  ( ~ + 2 ) ( a + 4 ) ( ~ + 6 ) ( c ~ + 8 )  " q d~- (12) 

_ ( 3 c r  1 .  d_q_q 3 ~ +  i0 ) 
r q dX (a + 2) 2 (~ + 4) 2 
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Fig. 3. Wall t e m p e r a t u r e  T w ve r sus  X 
f o r t  k = 0 .  1 ) r  2) 10. 

• ((z + 2) (a + ~a~  ~ ~ - a ~  ~ ) ~  +- 6 ) ~ - ~  8 ~ - 4 )  (33a 4 + 864a 3 + 7900~z 2 + 29680a + 38176) ] . 

Here  1 /q .  dq/dX --- 4 / T  w �9 dTw/dX, and T w a a re  found f rom 
the solution of the se t  of o rd inary  different ia l  equations (7). It 
is impor tant  to rea l ize  that  in compar ing  express ion  (12) with 
the exact  solution according to [2] for  the case  q = const the 
d i sc repancy  is 1 to 1.5%. I t  was a s sumed  in the der iva t ion  of 
condition (2c) that  the h e a t - t r a n s f e r  coefficient  in the initial 

c r o s s  sect ion tends to infinity, even through the p rob lem does not exclude the admiss ib i l i ty  of specifying a 
t e m p e r a t u r e  jump between the fluid and wall at the pipe ent ry .  

We solved the se t  of equations (7) numer ica l ly .  The resu l t s  of the calculat ions for  the local  c r i t e r ion  
Nu a re  given in Fig. 1. Curves  1 and 7 were  plotted for  the cases  of a constant  heat  flux and constant  wall  
t e m p e r a t u r e ,  r e spec t ive ly ,  and curves  2, 3, 4, 5, and 6 were  plotted for  the following values of the p a r a -  
m e t e r  ~: 0.2, 1, 5, 10, and 50. A compar i son  with the r e su l t s  of [6] yields a d i s c repancy  of 1 to 1.5%. As 

~ 0 and r ~ ~o the se t  of equations (7) degenera tes  into the se t  of equations cor responding  to specif icat ion 
of a constant  heat  flux at the pipe wall and a constant  pipe wall t e m p e r a t u r e ,  r e spec t ive ly .  I f  the t e m p e r a -  
tu re  of the surrounding medium is not equal to zero ,  we have q = - ~ ( T a w - T ~ ) .  We solve the s y s t e m  (7) for  
da/dX and (1/q)(dq/dX), subst i tut ing (1/q)(dq/dX) into (12) and putting da/dX = 0 for  X ~ oo. We obtain the 
following express ion  for  the l imit ing value Nur of the c r i t e r ion :  

N u : . = 4 8 / I 1 1  ( l l ~ z ~ + 1 0 6 ) ( 3 a ~ - - 4 ) ( ( z ~ + 2 ) ( a |  ] 
(z~ (cz| + 6) ((z~ + 8) (3cz~ + 10) 

in which a ~  is de te rmined  f rom the equation 

8 + ( 3 a ~ - - 4 ) ( a ~ + 2 ) 2 ( c r  [ 1 a ~ + 6  ] = 0 .  
~ ( 3 ~  + 10) 2~r~ + ( ~  + 2) ( ~  + 4) 

The dependence of the l imit ing c r i t e r ion  Nu~ on the p a r a m e t e r  ~T3 k is shown in Fig. 2. The values 
of the local  c r i t e r ion  Nu for  var ious  values  of the p a r a m e t e r  q> when the t e m p e r a t u r e  of the external  medium 
is equal to ze ro  is descr ibed  by the following interpolat ion fo rmula  (based on the values of the p a r a m e t e r  
in Fig, 1) : 

Nu 0.0061 - -  0.0053 In X 
-- 0.94 - -  In @ 

Ntlg=const 1 + 0.0242 In X 

with 1 to 2% e r r o r  in the range  0.001 < X < 0.2 and 0,1 < ~, < 50. The resu l t s  of calculat ions of the l imit ing 
c r i t e r ion  Nu~ a re  shown in Fig. 2, where  they a r e  descr ibed  by the interpolation fo rmula  

4.364 + 3.66r 
Nu~ = 

1 + @T~ 

with 0.5% e r r o r .  

The dependence of the second-approx imat ion  pipe wall t e m p e r a t u r e  on X is given in Fig. 3 for  values 
of the p a r a m e t e r  r = 0.2 and 10 (curves  1 and 2, respec t ive ly) .  A sharp  drop in the pipe wall  t e m p e r a t u r e  
is obse rved  in the initial sect ion.  
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Fig.  4. Dependence of heat  d i scharged  
on X f o r  T k = 0: a) calculat ion fo r  q ~ Ta w 
by means  of Nu; b) the s ame ,  fo r  T w 
= constant ,  i) r = 0.2; 2) 1; 3) 5; 4) 10. 
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The dependence of Qu/GCpT0 on X is shown in Fig. 4. Curves 1 through 4 were  plotted for  values of 
= 0.2, 1, 5, and 10, respect ively;  Also shown in this figure for  comparison are  al ternat ive curves  1 and 

4 plotted for  the case  of a constant pipe wall t empera tu re  for  values of the p a r am e te r  r = 0.2 and 10. It  is 
evident f rom the graph that the dif ference for  the neglected heat flux for  the corresponding curves  runs f rom 
10 to 1% in the interval  0.001 < X < 0.1. 
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q, q0 is 
T is  

G is 
X = x /dP e  is 
Pe is 
Nu = 2 a / ( T w - T )  is 
Nuoo is 

= e~T~/2~ is 

Q4 = qdX is 

N O T A T I O N  

a r e t h e  axial and radial  coordinates;  
is the pipe diameter ;  
a re  the t empera tu re s  of the fluid, the fluid at ent ry  to the pipe, the pipe wail, and the 

surrounding medium; 
is the fluid veloci ty in the pipe; 
is the average fluid velocity; 
a re  the density,  heat  capacity,  and thermal  conductivity of the fluid; 
is the emiss iv i ty  of the pipe surface;  
is the S te fan-Bol tzmann  constant; 

the heat flux at the wall and ent ry  of the pipe; 
the average fluid tempera ture ;  
the volumetr ic  flow rate  of fluid; 
the reduced axial coordinate;  
the Pec le t  number; 
the Nusselt  number;  
the l imiting value of the Nussel t  number; 
the radiat ion pa ramete r ;  

the integral  heat  flux f rom pipe surface .  
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